大家好,我是小新,我来为大家解答以上问题。酉矩阵和正交矩阵区别,酉矩阵很多人还不知道,现在让我们一起来看看吧!
1、原发布者:溪亭2012
2、正交矩阵、正规矩阵和酉矩阵在数学中,正规矩阵是与自己的共轭转置交换的复系数方块矩阵,也就是说,满足其中是的共轭转置。如果是实系数矩阵,那么条件简化为其中是的转置矩阵。矩阵的正规性是检验矩阵是否可对角化的一个简便方法:任意正规矩阵都可在经过一个酉变换后变为对角矩阵,反过来所有可在经过一个酉变换后变为对角矩阵的矩阵都是正规矩阵。在复系数矩阵中,所有的酉矩阵、埃尔米特矩阵和斜埃尔米特矩阵都是正规的。同理,在实系数矩阵中,所有的正交矩阵、对称矩阵和斜对称矩阵都是正规的。两个正规矩阵的乘积也不一定是正规矩阵 酉矩阵 n阶复方阵U的n个列向量是U空间的一个标准正交基,则U是酉矩阵(UnitaryMatrix)。 一个简单的充分必要判别准则是: 方阵U的共扼转置乘以U等于单位阵,则U是酉矩阵。即酉矩阵的逆矩阵与其伴随矩阵相等。 酉方阵在量子力学中有着重要的应用。酉等价是标准正交基到标准正交基的特殊基变换。 正交变换最初来自于维基百科,这种矩阵元被称为简正坐标.用质量加权坐标表示的分子内部运动的动能,用质量加权坐标表示的分子内部势能,用质量加权坐标表示的分子内部势能,由力常数的数学表达式可以知道fij=fji因而矩阵为一个正交变换通过酉变换可以把矩阵变形成为对角矩阵的形式:。则有:它的每一个矩阵元都是分子所有质量加权坐标的线性组合,总的矩阵元的数量恰巧等于质量加权坐标的个数,这些矩阵元就被称作简正坐标,而这些变
本文到此讲解完毕了,希望对大家有帮助。